
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y M A R C H 2 0 2 2 87

In Code Quality,1 Diomidis Spinellis observed that “…a
failure to satisfy a nonfunctional requirement can be
critical, even catastrophic…nonfunctional require-
ments are sometimes difficult to verify. We cannot

write a test case to verify a system’s reliability.” Conse-
quently, he concludes, “The ability to associate code to
nonfunctional properties can be a powerful weapon in a

software engineer’s arsenal.” As Spi-
nellis implies, attributes such as re-
liability and security are primarily
affected by the structural rather than
functional characteristics of a soft-
ware system’s architecture and code.

Standards regarding the struc-
tural quality of software systems
such as CERT C2 and the Motor In-
dustry Software Reliability Associa-
tion system3 have typically focused
on embedded system languages,
such as C and C++. Their use has
generally been in industries such as
automotive and avionics that em-
bed microchips in their products.
ISO/IEC 250234 defines software
quality measures, but they primar-

ily quantify the operational behaviors and outcomes
that result from the quality of the software, rather than
measuring structural attributes that cause the behaviors.
Consequently, industry has needed an international stan-
dard defining measures derived from source code analy-
sis covering both embedded and business systems.

ISO/IEC 5055:2021
To meet this need, the International Organization for
Standardization (ISO) published ISO/IEC 5055:2021

Digital Object Identifier 10.1109/MC.2022.3145265
Date of current version: 11 March 2022

Measuring the
Structural Quality of
Software Systems
Bill Curtis , Consortium for Information and Software Quality

Robert A. Martin , MITRE Corporation

Philippe-Emmanuel Douziech , CAST

 The International Organization for

Standardization recently published ISO/IEC

5055:2021 for measuring the reliability,

security, performance efficiency, and

maintainability of software systems by

detecting and counting severe violations of

good architectural and coding practice.

STANDARDS
EDITOR RICCARDO MARIANI

NVIDIA; rmariani@nvidia.com

88	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

STANDARDS

Automated Source Code Quality Mea-
sures5 in March 2021. This standard was
developed initially by the Consortium
for Information and Software Quality
(CISQ) with contributions by experts
from 31 companies in North America,
Europe, and Asia. CISQ was cofounded

by the Software Engineering Institute
at Carnegie Mellon University and the
Object Management Group (OMG) to
create standards for automating soft-
ware measurements. After the initial
specification was approved by the OMG,
it was submitted to ISO and approved as
a publicly available standard.

ISO/IEC 5055 defines four struc-
tural quality measures derived from
static analysis of a software system’s

source code and architectural structure.
These four measures assess the extent
to which a software system is free from
severe weaknesses that could affect its
reliability, security, performance effi-
ciency, and maintainability. These four
quality attributes were prioritized by

software executives invited to meet-
ings held in Washington, D.C.; Frank-
furt, Germany; and Bangalore, India.

ISO/IEC 25010:20116 enumerates
eight quality characteristics, four of
which map to the four measures in ISO/
IEC 5055. ISO/IEC 5055 adhered to the
definitions of the four quality charac-
teristics in ISO/IEC 25010 and used their
subcharacteristics to ensure domain
coverage by the weaknesses composing

each measure. Figure 1 presents the
ISO/IEC 25010 quality model with the
quality characteristics covered by ISO/
IEC 5055 shaded in blue.

CALCULATING MEASURES
FROM WEAKNESSES
The international team convened by CISQ
sorted through a wide range of software
weaknesses and selected those most se-
vere for inclusion in ISO/IEC 5055 mea-
sures. For purposes of selecting weak-
nesses, the assessment “severe” was
based on believing a weakness had to
be removed from the software to avoid
damaging operations or excessive cost
of ownership. Since many of the most
severe weaknesses involve errone-
ous interactions among components
spread across the stack of technologies
composing a system, weaknesses were
defined using a language-indepen-
dent representation.

The four measures are calculated by
counting the number of weaknesses de-
tected for each of the four quality char-
acteristics. These counts can then be

ISO/IEC 25010:2011
System and Software

Quality Models

Functional
Suitability

Reliability

Performance
Efficiency

Operability

Security

Compatibility

Maintainability

Portability

Functional Appropriateness, Accuracy,
and Compliance

Maturity, Availability, Fault Tolerance,
Recoverability, and Compliance

Time Behavior, Resource Utilization, and Compliance

Appropriateness, Recognizability, Learnability, Ease
of Use, Attractiveness, Accessibility, and Compliance

Confidentiality, Integrity, Nonrepudiation,
Accountability, Authenticity, and Compliance

Coexistence, Interoperability, and Compliance

Modularity, Reusability, Analyzability, Changeability,
Modification Stability, Testability, and Compliance

Adaptability, Installability, Replaceability,
and Compliance

FIGURE 1. Coverage of ISO/IEC 5055 measures in the ISO/IEC 25010 software quality model.

The measures can be normalized by size to
indicate defect density, by failed checks against

opportunities to assess rule compliance or sigma
level, or other comparable metrics.

	 M A R C H 2 0 2 2 � 89

normalized for use in benchmarking or
trend analysis. The measures can be nor-
malized by size to indicate defect den-
sity, by failed checks against opportuni-
ties to assess rule compliance or sigma
level, or other comparable metrics.

The four measures are constructed
from a list of 138 unique weaknesses,
examples of which are presented in
Figure 2. All 138 weaknesses are con-
tained in the Common Weakness Enu-
meration (CWE) repository7 main-
tained by MITRE Corp (cwe.mitre.
org). Weaknesses are divided between
92 primary weaknesses and 46 con-
tributing weaknesses. Contributing
weaknesses encompass various struc-
tural patterns through which 13 of the
primary weaknesses can be instanti-
ated in source code.

The ISO/IEC 5055 weaknesses in-
clude serious flaws at both the archi-
tectural and component levels to pro-
vide a broad evaluation of the factors
determining a system’s integrity. For
example, CWE-424: Improper Protec-
tion of Alternate Path is an architec-
tural weakness that violates security
and data protection controls by allow-
ing a path from the user interface di-
rectly to the database without passing
through user authentication routines.
CWE-404: Improper Resource Shut-
down or Release is a reliability and
performance efficiency weakness that
has frozen customer-facing systems
during critical business hours. The
other weaknesses comprising ISO/
IEC 5055 have similar undesirable im-
pacts on business operations and cost
of ownership.

Fi f t y wea k nesses overlap t wo
measures and are included in the cal-
culation of each. The impacts of six
weaknesses are so extensive that they
impact three measures. The most ex-
tensive overlap of weaknesses occurs
between the categories of reliability
and security with 38 weaknesses in-
cluded in the calculation of both. This
overlap occurs because some weak-
nesses causing reliability problems
can also create opportunities for un-
authorized access.

REPRESENTING ISO/IEC
5055 WEAKNESSES
All 138 weaknesses are represented in
metalanguages to guide static analysis
vendors in automating their detection.
The formal description provides an
overview of the abstract weakness pat-
tern and computational entities play-
ing a role in the pattern. It also lists
the uniform resource locator where
the weakness can be found in the CWE
repository and the detection patterns
needed for guiding implementation in
static analyzers.

The standard then enumerates 135
detection patterns that provide guid-
ance for detecting the weaknesses in
source code. The detection patterns
are represented in the Micro Knowl-
edge Discovery Metamodel (KDM,
ISO/IEC 195068), an intermediate rep-
resentation of the metadata and com-
putational elements emerging from
parsing source code. The detection pat-
terns are essentially a pseudocode rep-
resentation of the structural elements
of a weakness. Each unique instanti-
ation of a weakness is represented in
a detection pattern, and some weak-
nesses are associated with more than
one detection pattern.

For example, one of two detection
patterns for CWE-672: Operation on a
Resource after Expiration or Release

would identify occurrences in the code
where a path from the resource release
statement leads to the resource access
statement excluding pointers. The Mi-
cro KDM representation of this detec-
tion pattern is as follows:

PlatformModel

  …

  DataManager|FileResource id=“pr1”

  …

  PlatformResource id=“pa1”

  � kind=“open”

   implementation=“ae4”

   ManagesResource “pr1”

  PlatformResource id=“pa2”

  � kind=“close”

   implementation=“ae1”

   ManagesResource “pr1”

…

CodeModel

  …

  ActionElement id=“ae1”

   kind=“PlatformAction”

   Flows “ae3”

  ActionElement id=“ae3”

   Flows “ae4”

  ActionElement id=“ae4”

   kind=“PlatformAction”

USING ISO/IEC 5055
MEASURES
ISO/IEC 5055 measures can be used to
set measurable targets for sustaining

FIGURE 2. Example weaknesses for each of the four ISO/IEC 5055 measures.

Example Weaknesses

• Structured Query Language Injection
• Cross-Site Scripting
• Buffer Overflow

• Poor Exceptional Handling
• Deadlock
• Improper Synchronization

• Expensive Loop Operation
• Unindexed Data Access
• Failure to Use Data Manager

• Layer-Skipping Calls
• Excessive Coupling
• Excessive Copy–Paste

Weakness Categories and Numbers

Security
36 Primary
38 Contributing

Reliability
35 Primary
39 Contributing

Performance
Efficiency

15 Primary
3 Contributing

Maintainability
29 Primary

0 Contributing

90	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

STANDARDS

the reliability, security, performance
efficiency, and maintainability of
software systems. These targets can
be written into requests for proposal,
statements of work, and contracts as
acceptance criteria for software prod-
ucts delivered by system integrators,
software vendors, and other third-
party suppliers. They can also be used
with internal software teams to estab-
lish release criteria or improvement
targets. Some weaknesses contained
in ISO/IEC 5055, such as the most
dangerous security and reliability
weaknesses, can be marked as “un-
acceptable,” and software should not
be put into operation until they have
been removed.

The severity of a weakness depends
on the context of its position in a soft-
ware system. In some contexts, a se-
vere weakness can become less oner-
ous, while a less severe weakness may
become more dangerous. The weak-
nesses in ISO/IEC 5055 measures were
selected because they expose systems
to substantial operational and cost
of ownership risk in most contexts.
However, the severity of individual
weaknesses can be assessed using the
Common Weakness Scoring System9
to help prioritize corrective actions.

ISO standards undergo a systematic
review every five years. This provides
ISO/IEC 5055 an opportunity to update
the list of weaknesses in each mea-
sure. New classes of severe weaknesses
can be added. Empirical evidence from
operational and cost of ownership re-
search can cause others to be removed.
Thus, ISO/IEC 5055 will be periodically
updated as computing technology and
languages evolve.

ACKNOWLEDGMENTS
We thank the approximately 80 soft-
ware engineering professionals and
their CISQ member sponsors for par-
ticipating in selecting the weaknesses
and developing the measurement spec-
ification that ultimately became ISO/
IEC 5055. We also thank the OMG

Architecture Board for reviewing
the specification and improving its
presentation. Finally, we acknowl-
edge the help of David Filip of ADAPT
Center in Ireland for guiding us
through the ISO approval and publi-
cation process.

REFERENCES
1.	 D. Spinellis, Code Quality: The Open

Source Perspective. Upper Saddle
River, NJ, USA: Addison-Wesley.
2006, pp. xxvi–xxvii.

2.	 Software Engineering Institute, “SEI
CERT C coding standard: Rules for
developing safe, reliable, and secure
systems (2016 Edition),” Carnegie
Mellon Univ., Pittsburgh, PA, USA,
2016. [Online]. Available: https://
resources.sei.cmu.edu/library/
asset-view.cfm?assetID=454220

3.	 “MISRA C:2012 Third Edition, First
Revision,” The MISRA Consortium
Limited, Norwich, U.K., 2012. [On-
line]. Available: https://www.misra.
org.uk/product/misra-c2012-third
-edition-first-revision

4.	 Systems and Software Engineering —
Systems and Software Quality Require-
ments and Evaluation (SQuaRE) —
Measurement of System and Software
Product Quality, ISO/IEC 25023:2016,
International Organization for Stan-
dardization, Geneva, Switzerland,
2016. [Online]. Available: https://
www.iso.org/standard/35747.
html#:~:text=ISO%2FIEC%20
25023%3A2016

5.	 Information Technology — Software
Measurement — Software Quality
Measurement — Automated Source
Code Quality Measures, ISO/IEC
5055:2021, International Organiza-
tion for Standardization, Geneva,
Switzerland, 2021. [Online]. Avail-
able: https://standards.iso.org/ittf/
PubliclyAvailableStandards/

6.	 Systems and Software Engineer-
ing — Systems and Software Qual-
ity Requirements and Evaluation
(SQuaRE) — System and Software
Quality Models, ISO/IEC 25010:2011,

International Organization for Stan-
dardization, Geneva, Switzerland,
2011. [Online]. Available: https://
www.iso.org/standard/35733.html

7.	 R. A. Martin, “Managing vulnera-
bilities in networked systems,” IEEE
Softw., vol. 34, no. 11, pp. 32–38, Nov.
2001. doi: 10.1109/2.963441.

8.	 Information Technology — Object
Management Group Architec-
ture-Driven Modernization
(ADM) — Knowledge Discov-
ery Metamodel (KDM), ISO/IEC
19506:2012, International Organi-
zation for Standardization,
Geneva, Switzerland, 2012.
[Online]. Available: https://
www.iso.org/standard/32625.
html

9.	 “Common Weakness Scoring Sys-
tem (CWSS),” MITRE Corp., McLean,
VA, USA, 2014. [Online]. Avail-
able: https://cwe.mitre.org/cwss/
cwss_v1.0.1.html

BILL CURTIS is executive director
of the Consortium for Information
and Software Quality, a software
measurement standards consor-
tium cofounded by the Object
Management Group and Software
Engineering Institute. He is a
Fellow of IEEE. Contact him at
curtis@acm.org.

ROBERT A. MARTIN is a senior
principal software and supply
chain assurance engineer at
MITRE Corporation. Contact him
at ramartin@mitre.org.

PHILIPPE-EMMANUEL
DOUZIECH is a principal research
scientist at CAST Research Labs
focused on machine learning
applied to software structural
analysis Contact him at philippe
-emmanuel.douziech.1992@
mines-paris.org.

